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Abstract
Development of Embedded Real-Time Systems is prone to error, and developing bug-free applications is expensive and
no guarantees can be provided. We introduce the concept of Digital Quadruplet which includes: a 3D virtual representa-
tion of the physical world (a Digital Twin), a Discrete-Event formal model of the system of interest (called the ‘‘Digital
Triplet’’), which can be used for formal analysis as well as simulation studies, and a physical model of the real system
under study for experimentation (called the ‘‘Digital Quadruplet’’). We focus on the definition of the idea of a Digital
Quadruplet and how to make these four apparati consistent and reusable. To do so, we use the Discrete-Event formal
model as a center for both simulation and execution of the real-time embedded components with timing constraints, as
well as a common mechanism for interfacing with the digital counterparts, providing model continuity throughout the
process. Here we focus on a principal part of the Digital Quadruplet idea: the provision of an environment to allow
models to be used for simulation (in virtual time), visualization, or execution in real-time. A Discrete-EVent Systems
specifications (DEVS) kernel runs on bare-metal hardware platforms, avoiding the use of an Operating RTOS in the plat-
form, and the combination with discrete-event modeling engineering.

Keywords
Digital Twin, Digital Quadruplet, DEMES, Discrete-Event Modeling of Embedded Systems, cyber-physical systems, DEVS,
real-time DEVS

1. Introduction

Embedded Systems are computing systems with tightly

coupled hardware and software, which are designed to per-

form specific functions. Embedded systems have paved

the way for a world of connected devices in areas such as

our homes, workplaces, automobiles, medical care, and

unmanned aerial vehicles. They are ubiquitous, diverse,

and can be found in numerous industries (Aerospace,

Consumer Electronics, Defense, Medical Equipment, and

Transportation). A special category of Embedded Systems,

referred to as Real-Time Embedded Systems (RTES),1

needs to respond to external events with strict timing con-

straints. RTES are not only subject to functional and logi-

cal correctness, like other software systems, but they also

must deliver results within strict timing constraints.

Missing these deadlines may lead to significant loss and,

in some cases, catastrophic consequences. For instance, in

an airbag deployment system, a delay could lead to serious

injuries or even death. Besides, RTES usually operate in

limited-resource environments, are required to have a

small memory footprint, limited processing capabilities,

and low power consumption. RTES software should be

designed to meet these requirements, as well as varied

hardware/software interfaces as well as scalability and

complexity.

Despite these stringent requirements, there is still no

well-established and widely accepted robust framework for

designing RTES. Software is the most expensive and least

reliable part of RTES. The deficiencies mainly come from

the need of complex development cycles and the system

verification facilities.2 On the one hand, disruptions exist

through the development lifecycle because different arti-

facts and tools are used for analysis, design, test, and

implementation.3 Indeed, some tools/methods are used in

each stage of development, while others are better for other

development stages. For instance, MATLAB may be used

to build mathematical models to analyze the system
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behavior in the analysis stage. However, these mathemati-

cal models are scarcely used during the software design

stage, where software models (for instance, models

designed using Unified Modeling Language (UML)) are

more popular. Similarly, software models are not adequate

for system behavior analysis; as well, none of these models

can be directly executed on the target hardware platforms,

and consequently these models are abandoned during the

implementation phase in favor of traditional techniques

(for instance, methods based on programming languages

such as SystemC). These traditional techniques are never-

theless unable to handle the uprising heterogeneity. They

rather result in increased design rigidity and complex soft-

ware that can no longer guarantee sufficiently reliable sys-

tems. On the other hand, RTES system verification is

particularly complex. Since these systems are a tight mix

of embedded software and hardware components that are

required to respond to external events in real time, correct-

ness is hard to achieve.

In recent years, formal methods for RTES design4 have

shown promise in dealing with these issues, but they do

not scale up well. Current trends investigate model-based

design techniques to cope with heterogeneity, but the lack

of formal modeling methods and the existence of some

inconsistencies make RTES development become an ad

hoc process that is expensive, time-consuming, and error

prone. Instead, a practical solution to this problem is to

use Modeling and Simulation (M&S) techniques for test-

ing conditions regardless of the application’s size. In par-

ticular, the use of Formal M&S provides a means for

solving the problems stated above by combining the

advantages of a M&S-based approach with the rigor of a

formal methodology.5

Generally, M&S-based development lifecycles involve

Requirements and Specifications (Requirements are out-

lined, and specifications determined), Modeling and

Simulation (models of sensors, actuators, controllers, and

other components are designed, and the verification is

done through simulation). Then, a phase of Model

Mapping is executed (models are mapped to software and

hardware), and finally, a Prototyping and Implementation

phase is carried out (models are executed in a real-time

environment and incrementally replaced with their hard-

ware surrogates).6 Our long-term research goes beyond

these concepts and focuses on what we coined as ‘‘digital

quadruplets.’’ A Digital Twin7,8 normally includes a visual

representation of the physical system under study. We pro-

pose to expand such definition to include a formal model

of the real-world system that we call the ‘‘Digital Triplet.’’

This is a formal model that can be used for formal analysis

and can be used for simulation studies. In parallel, we pro-

pose to build a Physical Model, called the ‘‘Digital

Quadruplet,’’ which is a replica of the real system under

study at scale. The Quadruplet can be used for experimen-

tation on a physical model resembling the actual real-

world system under study.

Figure 1 shows the Digital Quadruplet concept. Starting

with a real-world System of Interest (in this case, a class-

room), we build a Digital Twin with all the objects in the

building: walls, vents, windows, power, and lighting fix-

tures (including, for instance, CO2 sensors to detect occu-

pancy). The Digital Twin information is used to build a

formal model: the Digital Triplet (which represents occu-

pancy of the room, movement of students, activation of

the CO2 sensors, which, depending on the number of stu-

dents, can be used to control the lights and HVAC levels

in the classroom). We can use the Digital Triplet to ana-

lyze the behavior of students and generation of CO2 in the

classroom, as well as the Real-Time embedded controller

using a formal model, as well as automating simulation

studies of the overall system. The Digital Quadruplet is

completed with a physical model of the classroom at scale,

in which we install different kinds of hardware devices to

conduct experimentation on a replica of the system of

Figure 1. (a) Real System (University Classroom); (b) Digital Twin (Building Information Model – BIM – of the University
Classroom under study); (c) Digital Triplet (Equations of the spread of CO2 in the classroom); (d) Digital Quadruplet (replica at scale
of the classroom, which can be wired with sensors and actuators for experimentation).
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interest (for instance, we can install CO2 sensors and gen-

erate CO2 to study the behavior of the control system for

the actual building, as well as experiments on fires, eva-

cuation of the classroom, or reduction of carbon emissions

with no risk and at reduced cost).

Our research focuses on how to make these apparati

consistent and reusable by using formal models for model-

ing, simulation, execution of the real-time embedded com-

ponents with timing constraints, and enabling visualization

while providing model continuity throughout the process.

The rest of the article describes a major part and contribu-

tion in this concept: the definition of a method and a proto-

type environment to build formal models that can be used

for simulation (in virtual time) and visualization, or execu-

tion in real-time (i.e., steps (b) and (c) in Figure 1).

This kind of M&S-driven development approach must

also ensure the progression from M&S to Prototyping and

Implementation. The models created for simulation are

often not reused, and the implementation is normally done

from scratch or using a different methodology.9 Instead, a

formal methodology providing model continuity can help

to solve this problem. Model continuity is defined as the

ability to retain the same models that were initially devel-

oped, throughout the various stages of the software devel-

opment lifecycle. Several M&S-based frameworks and

methodologies such as UML-RT, Ptolemy II, ECSL, and

MATLAB/Simulink have been developed but they are

semi-formal (which makes it more difficult to prove valu-

able properties about the models under development), and

they do not provide model continuity in the RTES devel-

opment lifecycle.5 DEMES (Discrete-Event Modeling of

Embedded Systems), an M&S-based development metho-

dology based on discrete-event systems specification,

offers a practical approach with a formal rigorous method

in which models are consistently used throughout the

development cycle.10

DEMES is an M&S-driven methodology that uses the

DEVS formalism11 to provide a formal foundation to

tackle the issues of RTES development discussed above.

The DEMES concept has been applied to the development

of different tools that include the E-CD++ environment,

offering a unified and consistent development environ-

ment. E-CD++ provides seamless integration from mod-

eling to development and it reduces the design efforts by

allowing the same models defined for simulation analysis

to be reused in real-time in the hardware target platform.

The methods and tools are based on the DEVS formalism,

and it provides a mechanism to run the models on a target

hardware without modifications, allowing modeling reuse

and evolvability. DEVS models can be tested through

simulation and then deployed in the target platform,

through incremental deployment in the target hardware

platform.

In Moallemi and Wainer,5 we introduced E-CD++, an

environment using a DEVS real-time executive running

on top of the Xenomai real-time kernel. Xenomai enabled

the manipulation of the underlying hardware platform.

Nevertheless, this approach has problems: to run

E-CD++, Linux and Xenomai, high-performance micro-

controllers are needed (including powerful processors,

memory, and in many cases, secondary memory to allow

the software stack to be executed without any problems).

Furthermore, the main constraint is that the OS introduces

unacceptable latencies and unpredictable execution times

due to the introduction of an abstract layer implementing

the OS services that one cannot control. To prevent these

issues, we have introduced a new method for bare-metal

execution, with a real-time kernel that does not rely on

Xenomai services or the Linux OS. The objective is to be

able to execute models directly on the target system hard-

ware without the need of an OS. The new E-CD++
presented here provides functionalities like those of a real-

time kernel, while DEVS models operate as system pro-

cesses. One of the advantages of this approach is the

reduction in the memory footprint, as the models run

directly on bare metal only including the necessary drivers

and the DEVS kernel. We have moved from general pur-

pose processors with at least 1Mb of RAM and 64Mb of

Flash (needed to store the kernel of the OS and the DEVS

environment, plus the models running) to microcontrollers

with 256Kb of RAM and 16Mb of Flash memory, being

able to run more complex models thanks to the space freed

by the OS, which is now not needed. Simultaneously, run-

ning on the bare hardware provides complete control on

schedulability of the tasks being executed and better anal-

ysis and control of the latency during the input/output

activities with the target hardware. The use of an OS pro-

vides a layer of abstraction that makes development easier,

but also introduces expensive memory requirements as

well as adding overhead in using the central processing

unit (CPU) and the scheduling algorithms can introduce

unexpected effects in the input/output processes.

The research presented here extends the applicability of

M&S-driven development by providing a DEVS execution

engine independent from the OS. As a result, target devices

such as low power microcontrollers are now covered.

Using the methodology, we can build digital quadruplets,

including advanced DEVS models for analysis and simula-

tion which can be integrated with visualization environ-

ments and executed in a hardware surrogate without

modifications. Likewise, we are not constrained by limited

resources and performance barriers introduced by the OS.

To show the feasibility of the approach, we present a case

study using the bare-metal environment.

The rest of the paper is organized as follows. Section 2

presents a brief overview of the DEVS formalism and its

application to real-time embedded systems design. Section

3 discusses E-CD++ architecture and its implementation

as an embedded software. Section 4 describes a case study

and the definition of a Digital Quadruplet, focusing on the
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software development of an embedded component using

E-CD++ and the model definition and execution.

2. Background

With the rising complexity, scalability, and heterogeneity

of RTES, alternative approaches are needed to cope with

these considerations. Model-based design methods offer

solutions but are still limited to the early stages of devel-

opment or only cover a limited range of devices.

2.1. Designing RTES

Since RTES are partly made of hardware and software,

three important design aspects have to be considered: the

hardware design, the co-design of hardware and software,

and the design of embedded software. The implementation

directly on hardware provides the advantage of better

energy efficiency; however, these kinds of implementa-

tions are very expensive and generally require long design

times.12 Although these methods are appropriate for small

systems, they are fast becoming infeasible due to the ever-

increasing heterogeneity and complexity of embedded

applications. For this reason, we need to raise the design

to a higher level of abstraction and provide an integrated

approach to software and hardware design to support the

new system.13

Traditional design divides hardware and software

design to conquer them separately. Indeed, most embedded

systems are designed from a register level description for

the hardware part on one hand, and the embedded software

code on the other hand.14 The implementation is obtained

using a top-down approach.15 Hence, traditional design

methodologies trace their origins from either software or

hardware traditions2,16 but do not cover hardware–software

co-design. Co-design17 is essential in order to design com-

plex applications since hardware components are diverse

in heterogeneous systems and software–hardware interface

should be handled earlier in the development cycle.

Two types of methodologies have emerged from tradi-

tional design: language-based (software-centric) and

synthetic-based (hardware-centric) methods. Language-

based methods are centered on a specific programming

language with a particular target runtime system. C and

RT-Java are such examples. Synthesis-based originates

from hardware design techniques. The development starts

with a system description, usually structural, in a tractable

fragment of a Hardware Description Language (HDL) like

VHDL and Verilog.2 Furthermore, with this type of

design, system designers can write systems at the system

level using C and C ++.18 The C/C++ description is

refined; and then manually translated into synthesizable

HDL by designers: an error-prone step.19 Consequently,

the usage of different languages and environments leads

to increased inconsistency, hardly verifiable, and

implementation platform dependent system specification.

The rise in heterogeneity and complexity of actual systems

requires a generic tactic: a modular, component-based

approach that addresses heterogeneity and complexity at

higher levels, integrates both hardware and software

design, enables verification, and offers a unified and con-

sistent development environment.

Methods centered on the semantics of abstract system

description were later introduced in an attempt to gain

independence from specific implementation platforms.

They combine both language and synthesis-based tech-

niques in order to enable hardware/software co-design.

Examples include SystemC,20 which combines synchro-

nous hardware semantics with asynchronous execution

mechanisms from C++. Recent methodologies are execu-

tion semantics independent, offer higher levels of abstrac-

tion, and go beyond platform independence. They are built

on modeling languages such as the UML21 and

Architecture Analysis and Design Language (AADL).22

These methods attempt to provide genericity both in the

choices of implementation platform and semantics for

abstract system descriptions and preserve hardware–

software co-design.

Model-based design and development seek to address

heterogeneity, and targets the system’s increasing scalabil-

ity and complexity early in the development cycle by

using models to describe the system. Therefore, RTES

design consists of transforming a more abstract model into

a less abstract one, until a final model is obtained and

ready to be deployed. Different modeling methodologies

have been introduced in literature and include UML-RT,

ECSL, Ptolemy II, and Behavior, Interaction and Priority

(BIP). While most model-based methodologies solve

existing challenges in the design phase, they do not cover

the full spectrum of embedded system development, lack

the needed formalism, and often remain limited to the

early stages of development.

For example, while UML-RT (the Unified Modeling

Language for Real-Time) uses UML extended to real-time

to represent special characteristics of RTES and can be

used to construct software design models, it is not adequate

to implement formal verification and hardware/software

co-design. As a consequence, UML models must be trans-

lated into or used along with some formalism. For instance,

in Murillo et al.,23 UML/MARTE is mapped to a mathe-

matical formalism; in Nascimento et al.,24 the functional

behavior of a UML model is translated into a network

Labeled Timed Automata (LTA) for formal verification. In

addition, UML lacks the methodology to complement the

design implementation after requirement specification; it

also has consistency problems, which is a major set-back

for this design methodology.21

Another example is Matlab/Simulink, a popular com-

mercial tool used for M&S of embedded systems. The tool

is based on data flow languages’ semantics that are
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defined through a simulation engine using block diagram

models to describe an analytical model. A powerful gra-

phical interface is available for visual construction and

integration of hardware blocks. Simulink can be integrated

with several tools, such as Stateflow, Simulink Coder, and

Embedded Coder for event-based modeling, physical mod-

eling, and code generation. Simulink is mainly used for

simulating real-time systems and does not cover the entire

RTES development spectrum. Although the code genera-

tion tool produces C/C++ code for embedded processors,

the generated code has limited usage and does not support

all the functionalities of the Simulink blocks.25

MathWorks brought in Simulink Code Inspector for code

verification. However, it is limited to a subset of Simulink

and Stateflow capability and can fail to detect model

incompatibilities. On the other hand, ECSL (Embedded

Control Systems Language), a graphical modeling lan-

guage built using the Generic Modeling Environment

(GME), was designed in the context of embedded automo-

tive systems to extend Matlab with capabilities such as

requirements specification, verification, mapping onto a

distributed platform, scheduling and performance analysis.

However, formal proof of correctness of the resulting

application behavior remains an open problem and testing

techniques are still under investigation.26 Ptolemy II, a

structured and hierarchical approach, attempts to attack

heterogeneity by using a specific model of computation

(MoC) that defines how computation takes place among a

structure of computational components and covers the

flow of data and control.9,27 BIP (Behavior, Interaction,

and Priority) is methodology for modeling heterogeneous

real-time components and defines them as the superposi-

tion of three layers: Behavior (a set of transitions),

Interactions (between transitions), and Priorities (to choose

among interactions). This approach preserves properties

during model composition and supports analysis and trans-

formation across different boundaries.28

Model transformation is central to all model-based

approaches and must preserve essential properties. Some

transformations are automated, and others are guided by

the designer.16 Automation uses code generators (such as

done in Matlab/Simulink,25 UML-VHDL29,30) which often

produce inefficient code from equation-based methods and

complicate verification. The other alternative is to develop

high-level programming languages able to express reac-

tion constraints together with the satisfaction of reaction

constraints guarantee.

Although model-based approaches handle modern sys-

tems’ complexity and heterogeneity by raising the level of

abstraction and allowing a hardware–software co-design,

research remains to be done in the areas of the develop-

ment cycle and system verification. Indeed, direct model

continuity should be supported and efficient model trans-

formation provided to ensure that initial models are reused

through the development cycle, maintain consistency and

offer a unified development framework. In addition to

being effective at the high level (system description),

model-based methods should also be effective at lower lev-

els (implementation) and be applicable to devices with lim-

ited resources (e.g., memory) as well as large systems in

order to compete with traditional methods. Formal meth-

ods can help with system verification, allowing demon-

strating correctness for certain system properties.

To meet the previous considerations, a formal metho-

dology that provides model continuity can be applied. In

the following sections, we will introduce DEMES,10 a for-

mal M&S-based development methodology based on

Discrete-EVent Systems specifications (DEVS).11,31

DEVS is a well-defined formalism that is expressive, oper-

ates at a high level of specification, and can be used to

represent both computing systems and the physical sys-

tems they control. DEMES provides a formal approach

where models are used throughout the development cycle.

2.2. Using DEVS as a formal M&S-based approach
for RTES design

DEVS is a Discrete-Event M&S formalism for dynamic

systems. The DEVS formalism decomposes complex sys-

tem designs into basic models called atomic and composite

models called coupled models.11 It follows an exact set of

rules for defining modeled system state changes for input

events or time delay triggers. DEVS is particularly suitable

for RTES because it provides a rich structural representa-

tion of the components and a formal means to explicitly

specify their timing which is the center of the real-time

system. It has been proven to be successful in different

complex systems.32,33

Besides, DEVS is the most general Discrete-Event

Formalism, and most existing Real-Time techniques (e.g.,

State Charts, VHDL, Verilog, Timed Automata) can be

expressed as DEVS. Plus, DEVS theory does not only pro-

vide a rigorous methodology for model construction but

also proposes an abstract algorithm independent of the

underlying hardware and middleware.

a) The DEMES development cycle. DEMES focuses on brid-

ging formal methods, modeling, simulation, and real-time

execution to develop real-time applications as well as for

studying their interaction with the physical environment.

The objective is to enable the original formal models to

become a part of the final application deployed in the tar-

get hardware platform. This is accomplished by using

M&S at an early stage during the design process and gra-

dually replacing the M&S model with hardware surrogates

and new software components that implement the original

model without changes, in incremental fashion and provid-

ing model continuity. After thorough testing on the simu-

lated platform, the model can be incorporated into the
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target environment and reused throughout the design

process.

Figure 2 shows the architecture of the DEMES metho-

dology. A designer starts (1) by modeling the System of

Interest (a real-time system and its environment) using

formal specifications (DEVS or alternative techniques

such as Statecharts, Hybrid Automata, or Modelica).

These models are converted into a DEVS representation,

then transformed into alternative representations (for

instance, using Timed Automata7), and then verified using

model-checking tools (2). The formal verification phase

can take a long time: the rules applied to check the models

can be complex to define, and in some cases, the model-

checking engines produce explosion of states, making the

formal verification process complex. In those cases, we

can take advantage of the formalization in DEVS, and the

same models used for model-checking can be used to test

the components in a simulated DEVS environment (3).

Another advantage is that in this process we can also

simulate physical environment in which the application is

deployed (4) and combine it with simulations of the RTS

model under particular loads of interest to the application

(5). In these simulation studies, instead of obtaining gen-

eral answers for all the possible cases of execution (like

those provided by model-checking), we can simulate indi-

vidual behaviors of the different submodels under specific

conditions. Simply put, system properties can be studied

formally using model-checking, and the proofs comple-

mented using M&S. It can also be used for collaborative

hardware/software design. This process includes also mod-

eling the physical system in which the software is

embedded. We model the physical system characteristics

that the RTS is interacting with and controlling, and they

can be simulated to study how the changes in the physical

system affect the software. Subsequently, the tested sub-

models can then be deployed in phases to the target

platform. (6). A real-time Executive executes the models

on the particular hardware. If hardware is not readily

available, software components can be developed in

stages, tested against hardware models to verify feasibility,

and make design decisions early. As the design process

progresses, both the software model and the hardware

model can be refined (in a spiral or tornado life develop-

ment cycle), gradually setting up checkpoints with actual

prototypes. The executive allows to execute dynamic mod-

els and to schedule static and dynamic tasks. At this point,

parts that are not verified in formal and simulated environ-

ments are tested. Most of the testing phase (7) can be done

using simulation (with faster than real-time performance),

even if the hardware is unavailable. Simulation provides a

risk-free testing environment, and will be applicable in

cases where real-life testing is impossible due to risks,

ethical, or practical issues. With DEMES, design changes

are done incrementally (8), providing a consistent set of

apparati throughout the development cycle. The cycle ends

with the RTS fully tested and every model deployed on

the target platform.

This approach has various advantages when compared

to other methodologies. For instance, the methods dis-

cussed in section 2.1. were semi-formal and do not provide

direct model continuity. In Huang and Sarjoughian,33 the

authors presented a comparison between DEVS and UML-

RT showed that features such as time, scheduling, and per-

formance coded using UML constructions are not formally

defined. Instead, formal modeling techniques such as

DEVS provide sound syntax/semantics for structure, beha-

vior, time representation, and composition, and are useful

for explicit computation.3,5 In addition, the DEMES

approach provides the following advantages:6,12

- Reliability: logical and timing correctness is based

on DEVS, which has a strong system theoretical root

and sound mathematical theory.

Figure 2. Discrete-Event Modeling of Embedded Systems (using DEVS).
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- Model reuse: DEVS has well-defined concepts for

coupling of components and hierarchical, modular

model composition, supported by the formal concept

of closure under coupling.

- Hybrid modeling: different methods can be used

while keeping independence at the level of the exec-

utive, using the most adequate technique on each

part of system architecture and reusing existing

expertise, which allows knowledge reuse.

- Process flexibility: hybrid modeling capabilities are

transparent for the executive, which is defined by an

abstract mechanism that is independent from the

model itself.

- Verification and validation: the definition of experi-

mental frames can be partially automated and formal

verification is possible. Formal verification will be

discussed in the next section.

b) DEVS model verification for real-time embedded
applications. One important aspect of DEMES is the use of

model-checking, which allows the designer to verify the

model’s correctness and eventually produce formally cor-

rect software. Therefore, deployed systems will have very

high reliability as the formal verification permits error

detection at the early stages of the design. Informal tech-

niques usually rely on extensive testing; they can reveal

errors but are unable to prove the nonexistence of errors.

Instead, formal techniques can prove the correctness of a

design. The main drawbacks, however, are that formal

techniques are constrained in their applications (not easy

to scale up), and are usually applied to abstract models

and not the final executable system.

When models used for M&S are formal, their correct-

ness is verifiable. Another advantage of executable models

(such as the ones featured in DEMES) is that they can be

deployed to the target platform, thus providing the oppor-

tunity to use the controller model not only for simulations

but also as the actual code executing on the target hard-

ware. Thus, the verified model is itself the final implemen-

tation executing in real time. This prevents any new errors

that might appear during the transformation of the verified

models into an implementation, hence guaranteeing a high

degree of correctness and reliability.

Hwang demonstrated that the verification of general

DEVS is undecidable through reachability analysis.34

Therefore, no model-checking tools have been built to ver-

ify models built-in DEVS. As a consequence, various

DEVS extensions were proposed, in which the authors

added constraints to the DEVS formalism to allow formal

verification, in particular, by restricting the time-advance

function to nonnegative rational numbers and the elapsed

time used in the external transition function. RTA-DEVS35

is one of those subclasses of DEVS that provides the

modeler with a method that is expressive to model

complex systems and can be verified through formal

model-checking techniques. RTA-DEVS models are a

class of rational time-advance DEVS that can be trans-

formed into equivalent Timed Automata that can be used

to formally verify the desired properties using model-

checking tools like UPPAAL.

c) Existing DEVS-based environments. Recent research has

focused on DEVS application to low-level applications

commonly found in embedded systems consisting of com-

puter hardware and real-time software. Current DEVS-

based development environments for RTES include

PowerDEVS36, a method to model hybrid systems and

carry out real-time M&S, and Action-Level Real-Time

DEVS (ALRT-DEVS)37 in which Network-on-Chip sys-

tems are modeled and simulated in real time. In Hu and

Zeigler,3 the authors show how model continuity can be

used in the design of dynamic distributed Real-Time sys-

tems. In Song and Kim,38 we can see an application of the

DEVS framework to the design and safety analysis of a

RTES (a railroad crossing control system). In Moallemi

et al.,39 model reuse and interoperability were shown by

interfacing E-CD++ and PowerDEVS. A System-On-

Chip FPGA implementation of E-CD++ was presented in

Moallemi and Wainer,40 and a M&S-based design of

embedded controllers on network processors in Castro

et al.41

Compared to traditional methods, there are significant

platform limitations: in Hu and Zeigler3 or Furfaro and

Nigro,32 where the platform uses JAVA, the target plat-

form should support the Java-DEVS real-time execution

environment. PowerDEVS requires a Linux RTAI ker-

nel.42 In Moallemi and Wainer,5 the DEVS-based tool

depended on Xenomai/Linux kernel services. From the

foregoing, although the DEMES approach offers multiple

benefits, tools have to be improved to overcome limita-

tions and support different hardware.

Earlier versions of E-CD++ relied on a variant of the

Linux kernel. In Castro et al.,41 E-CD++ was embedded

on the core processor of an Intel IXP2400 Network

Processor that runs RT Linux. It ran in the Linux User

Space and used Linux Kernel services. In Moallemi and

Wainer,40 a configurable Linux kernel was downloaded to

the SDRAM memory blocks on the AP1000 FPGA board.

This dependency also included the use of the Xenomai

real-time framework for Linux. Xenomai, installed as an

abstract RTOS core, provided hard real-time functionality

to the Linux kernel.

By eliminating OS and virtual machine restrictions,

reducing the footprint of embedded applications, and brid-

ging the gap between M&S and implementation increasing

efficiency can be improved. Eliminating the virtual

machine provided by the OS or the Java engines allow bet-

ter predictability and improved control of the software

Niyonkuru and Wainer 491



components, allowing the reduction of latencies and per-

mitting direct control on the hardware (which is not possi-

ble when an abstraction of the hardware is provided by an

OS or similar software). In this case, all the developers use

is DEVS and its well-defined functions (which includes a

simple API with four functions). In the following sections

we will discuss how this has been done, and will present

E-CD++ software components and its implementation.

2.3. E-CD++

Our RT kernel, E-CD++, allows the developers to follow

the DEMES methodology explained earlier to design com-

plete applications using a discrete-event modeling

approach. E-CD++ was developed using our previous

experience with the CD++ simulator31 (a DEVS-based

framework for M&S) and the RT-CD++ prototypes43,44

(an extension of CD++ for real-time model execution).

E-CD++ uses the original ideas for RT execution of

DEVS models that uses the CD++ virtual time-advance

function within a real-time context and provides an RT

M&S platform for simulation-based verification of such

models. Figure 3 shows the architecture of the E-CD++

framework, which allows the different stages in the

DEMES process to be integrated in a seamless fashion.

For the models to be replaced directly with external

entities, the I/O ports used for the DEVS models in

E-CD++ implement the interface mechanism originally

proposed for DEVSRT in the Driver Interface layer. The

intermediate software used for this is a real-time kernel,

and objects are imported into this platform as RT tasks at

runtime. The user models, the driver objects, and the

E-CD++ core objects are merged and compiled to pro-

duce an executable that runs on Xenomai. An Eclipse IDE

allows for the graphical development of models (a graph-

based representation can be used to specify the model’s

hierarchy, interconnections, and behaviors to automate

model generation). The DEVS M&S algorithms allow for

parallel execution of concurrent events through the imple-

mentation of a messaging behavior for model interaction.

The Flattened Coordinator technique45 improves the effi-

ciency of the DEVSRT messaging behavior through the

removal of superfluous messages that are generated for

communication between coupled models. Finally, the

Time Interval function enforces real-time constraints

through the use of wall-clock time advancement and exe-

cution deadline checking. The tool supports two execution

modes: simulation and real-time. In simulation mode, vir-

tual time advances using discrete-event algorithms. In

real-time mode, the execution is driven by the real-time

clock.

For E-CD++ to execute the tasks as outlined in the

various layers described in Figure 3, four software com-

ponents are needed (shown in Figure 4). These include:

the Main Runtime Subsystem, the Modeling Subsystem,

the RunTime Subsystem, and the Messaging Subsystem.

The Main Runtime Subsystem manages the overall aspects

of the real-time execution and provides timing functions

with microsecond precision. This is the first object (cre-

ated in a non-real-time context), which launches the

Runtime Subsystem. It first registers atomic components,

the Top coupled component ports that are connected to the

external environment, reads in external events (if any, for

testing purposes, from an existing event-file), and builds

an external event table. After, it reads in the model file

and builds the model hierarchy. Finally, it spawns the

main real-time task in which the Root Coordinator is cre-

ated to start the DEVSRT execution cycle.

The Runtime Subsystem consists of Simulators,

Coordinators, and the Processor Admin, which drive the

execution of the models. In E-CD++, the Simulators work

on runtime engines that correspond to atomic components,

and they perform the main job of executing the internal

transition and output functions for each of the submodels,

following DEVS algorithms. The Root Coordinator man-

ages the real-time event scheduling. It initializes a Driver

object that launches real-time input driver tasks (associated

Figure 3. E-CD+ + Layers.
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with input ports of the Top coupled component in the

DEVS model hierarchy).

The Modeling subsystem is generated in order to define

the Atomic and Coupled models, as well as the relation-

ships between them. For each of these models, the

Processor Admin within the Runtime Subsystem defines

Coordinators and Simulators in order to manage the beha-

vior of the model and drive its execution.

The Messaging the subsystem provides is in charge of

transmitting messages between the different components in

the Runtime Subsystem, which makes the model execution

advance (in virtual or real time).

This implementation is closely dependent on the Linux

OS and restricts supported devices. E-CD++ on Bare

Hardware removed this limitation, provides a DEVS exe-

cution engine that resides in a different microcontroller,

and it is OS independent, making it applicable to a broad

variety of hardware. To achieve this objective, several

changes were required and will be presented in the next

section.

3. E-CD++on bare hardware

As discussed in section 2, the development of embedded

applications using E-CD++ requires several changes to

the current iteration of the software. Through modifica-

tions to the existing software architecture, we provide now

stand-alone operation, i.e., bare-metal execution. To do so,

we had to leverage multiple existing functions as well as

develop additional functionality to operate without OS

support and directly interface with hardware devices.

3.1. High-level design

E-CD++ was built with the assumption that it would run

on a variant of the Linux kernel. This imposes memory

capacity, processing, and portability limitations. The target

platform must include the memory and processing power

necessary for the Linux kernel variant and there must be a

Linux kernel that can be compiled for the target platform

and can interface with the available hardware devices.

Both implementations on the network processor and the

FPGA board required a Linux kernel to be downloaded on

the target. In Castro et al.,41 E-CD++ was embedded on

the core processor of an Intel IXP2400 Network Processor

that runs RT Linux, while in Moallemi et al.,39 a configur-

able Linux kernel was downloaded to the SDRAM mem-

ory blocks on the AP1000 FPGA board. This dependency

also includes the use of the Xenomai real-time framework

for Linux.

Porting E-CD++ to embedded platforms with small

memory capacities is affected by the size of the application

as well as the Linux kernel. To tackle this challenge, we

could add external memory or use a network connection to

interface with the target platform from a M&S platform.

The inclusion of the Linux kernel and use of network driv-

ers reduce the portability of E-CD++ between different

platforms. In the design of the system, a target platform

Figure 4. E-CD+ + software components.
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must be chosen based on the availability of a Linux kernel

for that architecture as well as the availability of network

drivers and a suitable API that allows for control of hard-

ware devices over a network interface.

As a solution to the above challenges, we propose a

new architecture to remove these limitations through the

removal of Linux dependencies as well as the implementa-

tion of the Driver model to eliminate the need for API

availability, as seen in Figure 5.

The middle part of Figure 5 shows the corresponding

components for the Xenomai version of E-CD++. In this

case, the application layer is made of user models and

real-time executives in charge of executing them. These

layers are in what we named the ‘‘DEVS space’’ as they

pertain to the DEVS framework. The real-time executive

relies on the Xenomai kernel. To switch to bare metal, sev-

eral changes are needed, namely the real-time executive,

the introduction of a microkernel – that provides functions

to handle system calls, to manage memory and hardware

resources – and the use of a small and optimized GNU

library for embedded systems (in our case Nanolib) for

code size reduction.

To successfully run on bare metal, all the Operating

System dependencies needed to be removed and a microker-

nel developed to provide the essential services offered by

the real-time kernel, including file, memory, and hardware

resource management. Applications request OS services via

system calls; for the bare-metal real-time executive we iden-

tified the system calls needed and provided functions with

the same signature but with a re-designed implementation

that takes into account the limitations and environment of

the target platform. These include:

- file and input/output management to read the user-

model files;

- memory management (e.g., sbrk) for allocation/deal-

location of memory, for heap memory allocation;

- real-time calls to the Linux kernel, by interfacing

with the hardware clock of the target platform;

- other services, providing similar functions to repli-

cate them using hardware components (i.e., onboard

memory and low power modes);

- startup code, low-level initialization, linker script,

and interrupt handling mechanisms.

Many of the OS services are unnecessary (for instance,

inter-process communications, as there is only a single pro-

cess running in the DEVS kernel). Multi-processing can be

implemented directly at the model level and natively

handled by the execution module based on DEVS algo-

rithms. In this context, models act as processes and the

DEVS coordinators as the Process Scheduler. Periodic and

aperiodic tasks can be managed with timers and interrupts.

The new functions were developed to provide essential

functionalities requested through system calls without the

overhead of a full OS kernel. This provides the capability

of scheduling function calls at timing intervals as dictated

by the onboard timer without the need for a real-time

framework to enforce these constraints. The DEVS kernel

needed other updates, including a new implementation of a

Driver model and the use of a Flattened Coordinator

technique.45

With these changes, it is possible to move the DEVSRT

engine as well as the I/O drivers directly onto the target

platform, eliminating the need for a network interface for

communication between the M&S platform and the target

platform as illustrated in Figure 5. The new functions were

implemented to provide the same functionalities as the

original system calls without the overhead of a full OS

kernel.

Figure 5. RTOS vs bare metal – an overview.
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In section 3.2, the main changes mentioned above will

be detailed and their implementation further explained.

3.2. Implementation details

In this section we discuss a few details related to the

implementation to show how the general ideas

have been carried out. A complete implementation is

available in open source (https://github.com/
SimulationEverywhere/RT-Cadmium-Models).
Initially, the Driver concept and the Flattened Coordinator

were adapted to achieve our goals. These components are

described in Figure 6. The Runtime and the Modeling sub-

systems now include a Flattened Coordinator as well as

the integration with the Driver model. The Flattened

Coordinator has been added to the Runtime Subsystem

where it replaced the many Coordinators that are needed

in a hierarchical Coordinator algorithm as described by

Zeigler et al.,11 which were previously used in E-CD++.

The Driver has also been added to the Runtime Subsystem

providing an interface to initialize hardware devices as

well as to interact with the Ports that are associated with

the model.

With the aid of the Driver object, external I/O devices

can be controlled through the encapsulation of hardware

specific functionality. Using this model, we can interface a

wide range of devices and improve portability by imple-

menting basic drivers that are accessed by E-CD++. From

an implementation point of view, the Driver model

manages hardware devices using two classes: Port and

Driver. The Port class resides in the Modeling subsystem

while the Driver class is in the Runtime Subsystem.

Together, they provide a link between the DEVS imple-

mentation and the hardware target platform. The Port class

represents the logical connection between models and

hardware devices. In the previous implementation, the Port

class established API commands over a network interface

but with the bare hardware implementation, the Port class

includes Input and Output low-level functions that provide

direct interface with the hardware device. In the case of

Inputs, the receipt of a signal on a Port will cause the gen-

eration of a DEVS message, which is then added to a mes-

sage queue processed by the Root Coordinator. When

configured as an output, the Port will receive the data from

a DEVS message from the Driver class, which will then be

translated into a signal that can be interpreted by a hard-

ware device. The bare-metal implementation allows using

hardware and software interrupt service routines of the tar-

get platform to notify E-CD++ of I/O events. The specific

hardware interrupts associated with the device can then be

used to generate DEVS messages based on the values

received. Similarly, software interrupts can be pro-

grammed to provide periodic polling.

We also needed to define two types of devices that a

Port/Driver may be associated with: passive and active

devices. Passive devices (for example, passive sensors)

must be polled at specific intervals to determine their cur-

rent state; hence, interfacing them requires the

Figure 6. E-CD+ + Software architecture.
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implementation of a periodic timer interrupt that requests

the state of those devices. This can be accomplished

through the creation of a software interrupt that is tied to a

division of the base clock, allowing for the software inter-

rupt to be triggered at regular intervals, eliminating the

need for real-time tasks. The state that is returned from

these interrupts is then passed to the associated Driver. An

active device is classified as a hardware device that trig-

gers an input event. Active devices can trigger a hardware

interrupt at which point they will pass their states to the

Driver for processing. Hardware and software interrupts

can be used to generate messages from active devices;

when the interrupt is triggered, a message can be added to

the message bag.

As embedded platforms are generally limited in terms

of memory and a CPU power, the OS dependency of the

C++ library was removed to streamline the performance

of the software as well as increase the portability of the

overall system. E-CD++ is the only application running

on the target platform, reducing the memory footprint (as

there is no OS running). The replication of some key OS

functionalities is achieved using hardware devices avail-

able on the target platform (real-time clock, onboard mem-

ory, low-power modes, etc.).

The Main Runtime subsystem is the first object to be

created. It oversees initializing the system timing. This is

achieved with a 32-bit timer set to trigger at 1MHz there-

fore providing microsecond precision (as Xenomai does).

A constraint is that the microcontroller’s clock frequency

should be at least 1MHz (which is common nowadays).

Then, it registers the model file, the only file referenced by

E-CD++ during execution on the target platform. Since

we do not have a complete OS file system, we developed a

pseudo file system to maintain continuity between desktop

simulation and target real-time execution. To mimic this

behavior, the model files are loaded directly into memory

and the file names are used to populate a file register. The

file register then determines the memory address of the text

file using a file table that contains the mapping between

file names and memory addresses. The file table also pro-

vides information about the file that is required by the

C++ library, for example, the file size.

One of the other major tasks of the Main Runtime sub-

system is to load models and ports. After registering

atomic models by adding pointers to their constructors into

a model admin table (a hash table that serves as an atomic

model object database), and top ports by adding them into

a port admin table (a hash table that serves as a port object

database), the Main Runtime subsystem constructs the

DEVS model hierarchy. This is done by parsing the model

file that contains the components and their relations (i.e.,

Atomic and Coupled models, their links/couplings – EIC,

IC, EOC – and ports) and calling the Model Admin and

the Processor Admin to construct a model hierarchy tree

and a simulator/coordinator tree. These two trees are

constructed in parallel, i.e., when the model admin adds a

node; the processor admin also adds a corresponding exe-

cution node providing a one-to-one relationship. The

model hierarchy tree belongs to the model class and has

atomic (leaf nodes) and coupled models (non-leaf nodes)

as its node while the processor hierarchy tree has simula-

tors (leaf nodes) and coordinators (non-leaf nodes) as its

nodes. As a Flattened Coordinator is used, the coupled

models are eliminated from the model hierarchy tree, and

all the atomic model port links are rewired to bypass the

coupled models.

Once the models are loaded, the control is passed to the

Root Coordinator that manages the rest of the execution by

monitoring signals from the environment, handling sche-

duling, and passing messages.

The hardware component interface allows direct access

to the microcontroller, and the entire application holds in

the onboard memory. We were able to interface with

STMicroelectronics’ STM32 peripheral libraries, and this

can be done with other vendors as well. Model continuity

is achieved, as the DEVS model is not changed throughout

development. This design is also portable as models devel-

oped can be run on bare metal by specifying the necessary

port drivers to interact with real hardware components. As

mentioned, the implementation of the port/driver concepts

greatly increases this portability through the encapsulation

and generalization of I/O devices allowing for simple

addition of new devices.

The functionality of some functions run by the OS was

reproduced through the creation of functions with the same

signature but with a re-designed implementation that takes

into account the limitations and environment of the target

platform. For instance, Xenomai provides real-time guar-

antees through the implementation of constrained functions

as well as the use of a real-time scheduler. In bare metal,

timing is now controlled at the clock level through periodic

timer interrupts to manage scheduling, and at the model

level through model specification and model-checking of

the timing constraints. A timer is set to trigger at every 1

ms. In addition, the removal of Xenomai also required

changing the Root Coordinator, which would sleep until

the next internal transition is scheduled, periodically veri-

fying that an external event has not occurred. If an external

event occurred, the event would be processed prior to the

internal transition and the cycle will repeat. In the case

where there are no more internal transitions scheduled, the

Root Coordinator would place the microcontroller into low

power mode, and it would wait for the next external event.

MCU device libraries allow access and configuration of

hardware components. We integrated peripheral libraries

in the hardware-dependent kernel. When defining input

and output ports connected to hardware, the user can reuse

methods provided by the hardware abstract library to get

value from sensors or actuate on external devices. This
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includes ready-to-use methods to include commonly used

hardware components (e.g., ultrasonic, light sensors).

The only file referenced by E-CD++ at runtime is the

model file. In fact, models are loaded at runtime reading

and interpretating the model file. Since we do not have an

OS with a file system, we developed a pseudo file system

to maintain continuity between desktop model simulation

and the target model real-time execution. To mimic this

behavior, the model files are loaded directly into memory

and the file names are used to populate a file register. The

file register then determines the memory address of the

text file using a table that contains the mapping between

file names and memory addresses. The file table also pro-

vides information about the file that is required by the

C++ library, for example, file size.

Early integration of the bare-metal E-CD++ was done

on an MCBSTM32F200 evaluation board. Developed by

Keil, the board includes the STM32F207IG ARM Cortex-

M3 based microcontroller, which has a clock speed of 120

MHz, 1 MB of ROM, and 128 KB of RAM. Through the

implementation of drivers for the different I/O devices on

the evaluation board, we performed early integration test-

ing which demonstrated the feasibility of the bare-metal

implementation. On the software platform side, Eclipse

was used along with the GNU ARM bare metal toolchain

to build applications and GDB to debug hardware and

software.

Overall, a high level of portability and model continuity

can be achieved, as the DEVS model is not changed

throughout the development. This design is also portable,

as the software core of E-CD++ has not changed (all that

has changed are the external interfaces). As mentioned,

the implementation of the Driver model greatly increases

this portability through the encapsulation and generaliza-

tion of I/O devices allowing for the simple addition of

new devices.

4. Building a Digital Quadruplet: Urban
Futures Transportation Charrette

In this section we describe the context of a project for

which we have used the bare-metal E-CD++ to build an

autonomous vehicle integrated into a Digital Quadruplet.

We focus on the vehicle integration for the case study, the

definition and implementation of the embedded applica-

tion, and we show how the modeling method can be used

to build these models (which have been developed by

Engineering students without previous expertise in DEVS

or BIM and who were able to build the Digital Quadruplet

with minimal support).

The Digital Quadruple was developed under the

umbrella of the Urban Futures research project ((http://

urbanfutures.ca/designcharrette-transport). The objective

of Urban Futures is to conduct multidisciplinary research

in the area of digital technologies for urbanism. To do so,

experts from industry, government, academia, and not-for-

profit organizations joined to question and challenge

operational dimensions of ‘‘smart city’’ technologies. This

is an important topic in the Canadian context. In 2016,

Statistics Canada reported that over 80% of Canadians are

living in urban areas and that the trend is accelerating. The

calibration, coordination, and communication among intel-

ligent systems needs problem-solving as an iterative, col-

laborative, and inclusive design exercise. The project

activities were organized as a series of intensive design

charrettes, in which participants discussed, debated, and

developed ideas in reaction to themed ‘‘what-if’’ scenar-

ios. The case study presented here focuses on the

Transportation charrette for Carleton University, in

Ottawa, ON, Canada. In this case study, depicted in

Figure 7, we consider the deployment of autonomous vehi-

cles (bottom right of the figure) that circulate through the

campus, transporting individuals and goods from one

building to the next, and stopping in parking lots, public

transportation stations (light rail, bus), and specific stops

throughout the campus.

As we can see in Figure 8(a) and (b), we started by

building a Digital Twin of Carleton University campus. A

more detailed figure of this first step can be seen in Figure 9.

We established a process using Autodesk Revit and

Autodesk Dynamo to extract information of the whole

campus to be used for simulation. This includes a cloud

point with buildings, roads, transportation data, traffic

signs, and sources of pedestrians (buildings, public trans-

portation). This information is given as initialization data

for DEVS models in CD++. We built a simulation model

of the autonomous vehicle using CD++, which can navi-

gate the digital campus in simulated fashion (shown in

Figure 8(c)). We used the same tools for visualization

analysis, to study the behavior of the system in the Digital

Twin. The integration of the DEVS models and the Digital

Twin conform to the campus Digital Triplet.

In the following sections we describe the models used

to build the physical system at scale (Figure 8(d)), based

Figure 7. Urban Futures: Transport Charrette (http://
urbanfutures.ca/designcharrette-transport).
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on models of the real system and a hardware implementa-

tion integrated to the Digital Quadruplet, which can be

used for experimentation mixing simulation, visualization,

and real-time control. The objective is to show how

E-CD++ can be used for modeling, simulation, and real-

time execution of the models.

4.1. The model

The first step in our methodology, as discussed earlier, is

to build a model of the system of interest using DEVS.

Figure 10 illustrates the resulting DEVS model hierarchy

for the case study. A Central Computer contains the BIM

models, and it is used to conduct visualization of the run-

ning models (which was shown in Figure 8(c)). The three

main components are in charge of geolocating the vehicle

(using RFID tags that are activated when the vehicle

arrives in a given station), converting the information from

the RFID into geolocation (which is sent to the BIM

model for display), and driving the vehicle, done by the

SeedBotDriver.

All the components are defined as a DEVS model. For

instance, the SeedBotDriver, shown in the bottom part of

the figure, is defined as a coupled model with four input

ports to give/receive information about (start/stop external

commands, distance and direction sensors values), and

two output ports to send commands to vehicle motors. The

vehicle top model is made of three coupled models:

the Sensor Unit, Control Unit, and Movement Unit. The

Sensor Unit contains two Direction Sensor models (left

and right), and a distance sensor, defined using three

atomic models. The distance sensor calculates the distance

to an object and transmits the readings to the Control Unit

for processing. The direction sensors send signals to the

sensor unit indicating if an object was detected or not in

that direction. The Control Unit is built as a composite of

two atomic models: the Sensor Controller and the

Movement Controller. The Sensor Controller receives the

distance and direction readings and sends information to

the Movement Controller to specify whether the vehicle is

free to move, or has encountered an obstacle (in front or

sideways).

The Movement Controller receives obstacle signals

from the Sensor Controller and sends appropriate com-

mands to the Movement Unit (which contains controllers

for left and right motors). According to the sensor informa-

tion, the Movement Unit sends ‘‘go forward’’ commands

to both motors (to continue straight), or only to the right or

left motors, in forward/reverse direction, to avoid obstacles

depending on the obstacle location (front, left, or right).

Each of these models is defined using DEVS; we show the

definition of the Sensor Controller model as an example.

Figure 11 illustrates the state transitions using a DEVS

Graph representing the Sensor Controller’s behavior. The

diagram summarizes the behavior of the DEVS atomic

component by presenting the states, transitions, inputs,

outputs, and state durations graphically.38 The circles rep-

resent states (the double circle is the initial state), which

have a name and a duration shown in the circle. The con-

tinuous edges between the states represent the external

transitions, which include the names of the input ports, the

input value, and any condition on the input (with format

‘‘port?value’’). The dotted lines represent the internal tran-

sitions and the associated outputs (with format

‘‘port!value’’).

The Sensor Controller starts in the IDLE state and

remains in that state until a start command is received. In

that case, the external transition function executes, and the

Sensor Controller state changes to PREP_RX. At this

stage, it waits for the predefined time ta=scRxPrepTime

Figure 8. (a) Real System; (b) Digital Twin; (c) Digital Triplet; (d) Digital Quadruplet.
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after which a default NO_OBSTACLE signal is sent to the

Movement Controller and an internal transition is triggered

changing its state to WAIT_DATA. Sensor Controller

waits in this state until it receives a signal from one of the

sensors. When a signal is received, if it indicates to stop,

the external transition causes Sensor Controller to go to

Figure 9. Carleton University Digital Twin (https://sustain.sce.carleton.ca).

Figure 10. Vehicle model DEVS hierarchy.
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the PREP_STOP state, at which it will immediately send a

stop signal and then transition back to the IDLE state.

However, if the received signal is different, Sensor

Controller will go to the TX_DATA state at which it will

wait for a time-advance period of ta=scTxTime before it

sends an output indicating whether the vehicle has encoun-

tered an object in front or a side sensor detected with an

obstacle, and transitions back to the WAIT_DATA state.

At any point in time, if Sensor Controller receives a man-

ual stop signal (STOP_CMD), it will execute an external

transition to the PREP_STOP state to stop all activities.

Using the model transformation defined in Saadawi and

Wainer,35 each of the models in the system can be con-

verted into a Timed Automata and verified formally using

model-checking (for instance, using a tool like UPPAAL).

As stated earlier, this section will only focus on showing

how the models are defined and then executed in the

context of simulation or real-time execution (the reader

interested in formal verification of the model can refer to

Hwang34).

4.2. Model definition in E-CD++

E-CD++ provides a mechanism to program DEVS mod-

els’ hierarchical structures. The coupled model definitions

are defined using a built-in language which uses the for-

mal definition of the DEVS coupled models. The follow-

ing code snippet describes the Sensor and Movement

Controllers specification components of the Control Unit,

in accordance with the model diagram described in

section 4.1.

The Model file snippet (Figure 12) starts by defining

the Control Unit as a coupled model composed of two

instances: SCtrl and MCtrl, of Sensor and Movement

Controller, respectively. Then, the input (CU_

START_IN_TOP, CU_LEFT_IN_SU,CU_RIGHT_IN_SU

and CU_DISTANCE_IN_SU) and output (CU_

MOVEL_OUT_MU and CU_MOVER_OUT_MU) ports

of the Control Unit are defined. Finally, the input and out-

put connections between the ports of the Control Unit and

those of SCtrl and MCtrl are described, as well as the

internal connections between SCtrl and MCtrl. The direc-

tion of the connection is read as FROM port � TO port.

The atomic model presented earlier in Figure 11

describes the transition and output functions of the Sensor

Controller. A section of the model in CD++ is presented

in Figure 13.

The code snippet first shows a portion of the external

transition function that describes the transition from state

WAIT_DATA to either TX_DATA depending on the

value (sensor_input) of the incoming signal from the

Distance Sensor received on port sctrl_dist_in (as shown

Figure 11. Sensor Controller DEVS graph.

Figure 12. Model file excerpt.
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in Figure 11). Lines 12 to 20 show a portion of the internal

transition function describing the transition from

TX_DATA to WAIT_DATA. Finally, lines 23 to 37 show

a portion of the output function’s behavior at state

TX_DATA. The output function sets the output signal

(FWD_BLOCKED, LEFT_BLOCKED, RIGHT_

BLOCKED or NO_OBSTACLE) to send to the Movement

Controller through port sctrl_mctrl_out.

Using these model classes and the core components of

E-CD++, different scenarios were tested early on the

development platform using simulation mode. Once the

verification step is completed for each of the components,

they can be transferred incrementally to the target plat-

form. In order to do this, each driver is associated with

specific commands related to the hardware component it

interacts with and the corresponding input/output ports. In

this case, we deployed these models in different ARM

boards. In Figure 14 we show one configuration built on a

Parallax shield. The native code is downloaded directly in

memory via ST-LINK, an in-circuit programmer for the

STM32 microcontroller families. This interface module is

enabled with JTAG/serial wire debugging interfaces that

can be used to communicate with the target platform and

debug via an OpenOCD client/server connection.

Interfacing E-CD++ with hardware peripherals is made

easy by the available port/driver interface and the compre-

hensive standard peripheral libraries offered by

STMicroelectronics in this case. These two elements can

be seamlessly integrated, compiled to the native bytecode,

and result in a DEVS-based firmware able to control the

peripherals and respond to diverse external stimuli.

Different tests conducted progressively on each of the

components allowed us to show the idea of model continu-

ity. The models defined formally as in Figure 11 were

thoroughly studied through E-CD++ simulation interface.

Each of the simulated components were replaced by the

corresponding hardware components and their controllers

in the target platforms. As discussed in the paper, the

Figure 13. Sensor Controller code snippet.
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models in both simulated and real-time control mode are

exactly the same and the bare-hardware kernel can under-

stand the DEVS models and execute them in real-time

mode, directly on the hardware platform without any inter-

mediate software. The final deployment was made on the

final target and models run on the microcontroller. Table 1

shows the port mapping table for some of the tests

conducted.

An example of simulated events injected into the sys-

tem is as follows. The system starts by sending a

START_CMD (10) input through the START_IN input

port. Then, at 2’01’’, a value of 30 (meaning that an object

is at 30 cm in front of the vehicle) is sent through the

DISTANCE_IN input port. To illustrate the situations

when the vehicle gets close to the object, a value of 10 is

sent through the DISTANCE_IN port at 07’50’’. Different

values are then sent through the directions port to test how

the system behaves after a direction detects an object (e.g.,

right direction at 13’ and 18’, left direction at 17’ and

18’05’’). Afterward, a short distance, 5 cm, is sent through

the distance port at 19’. The remaining input events should

not trigger any change in movement since they do not

indicate the presence of an obstacle.

Table 2 shows and describes the results that we

obtained.

The resulting behavior is similar to the one defined in

the controller models. Indeed, when the vehicle detects a

close object, it stops and turns in order to avoid the obsta-

cle, and stops again before moving forward. Similarly

when an obstacle is detected, the vehicle avoids the obsta-

cle, as expected. The same inputs were used on the

ARM board. In the next figure, some of the inputs are

shown as well as their corresponding outputs (in bold).

Microseconds are shown in the logs since we used a 32-bit

timer that allows such precision.

00:00:00:000:030 START_IN 10
00:00:00:150:002 mover_out 1
00:00:00:150:002 movel_out 1
00:02:01:000:031 DISTANCE_IN 30
00:05:07:000:036 DISTANCE_IN 20
00:07:50:000:022 DISTANCE_IN 10
00:07:50:060:200 mover_out 0
00:07:50:060:200 movel_out 0
00:07:50:160:200 mover_out 2
.

Figure 14. Parallax Shield with Nucleo Board.

Table 1. Port mapping.

Port name Port value Hardware command Comment/description

START_IN 10 START_CMD Start command
11 STOP_CMD Stop command

DISTANCE_IN x x> 10?FAR:CLOSE Distance in cm. If the distance is
less or equal to 10 cm, the object is close

LEFT_IN 0 NO_OBSTACLE No obstacle detected
1 OBSTACLE Object detected

RIGHT_IN 0 NO_OBSTACLE No object detected
1 OBSTACLE Object detected

MOVER_OUT/
MOVEL_OUT

0
1
2

STOP
FORWARD
REVERSE

Stops the motor
Spins clockwise
Spins anticlockwise
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Table 2. Results of Line Tracking Vehicle’s model in E-CD++ .

Input Output Description

1. 00:00:00:000 START_IN START_CMD 00:00:00:150 mover_out 1
00:00:00:150 movel_out 1

System START.
The vehicle moves forward

2. 00:02:01:000 DISTANCE_IN 30cm - Ignored – no obstacle
3. 00:05:07:000 DISTANCE_IN 20cm - Ignored – no obstacle
4. 00:07:50:700 DISTANCE_IN 10cm 00:07:50:060 mover_out 0

00:07:50:060 movel_out 0
00:07:50:160 mover_out 2
00:07:50:160 movel_out 1
00:07:51:110 mover_out 0
00:07:51:110 movel_out 0
00:07:51:210 mover_out 1
00:07:51:210 movel_out 1

STOP

TURN RIGHT

STOP

FWD

5. 00:08:05:000 LEFT_IN NO_OBSTACLE - Ignored – no obstacle
6. 00:09:10:000 RIGHT_IN NO_OBSTACLE - Ignored – no obstacle
7. 00:10:10:000 DISTANCE_IN 20cm - Ignored – no obstacle
8. 00:13:00:000 RIGHT_IN OBSTACLE 00:13:00:050 mover_out 0

00:13:00:050 movel_out 0
00:13:00:150 mover_out 1
00:13:00:150 movel_out 2
00:13:01:100 mover_out 0
00:13:01:100 movel_out 0
00:13:01:200 mover_out 1
00:13:01:200 movel_out 1

STOP

TURN LEFT

STOP

FWD

9. 00:15:00:000 DISTANCE_IN 30cm - Ignored – no obstacle
10. 00:17:00:000 LEFT_IN OBSTACLE 00:17:00:050 mover_out 0

00:17:00:050 movel_out 0
00:17:00:150 mover_out 2
00:17:00:150 movel_out 1
00:17:01:100 mover_out 0
00:17:01:100 movel_out 0
00:17:01:200 mover_out 1
00:17:01:200 movel_out 1

STOP

TURN RIGHT

STOP

FWD

11. 00:18:00:000 RIGHT_IN OBSTACLE 00:18:00:050 mover_out 0
00:18:00:050 movel_out 0
00:18:00:150 mover_out 1
00:18:00:150 movel_out 2
00:18:01:100 mover_out 0
00:18:01:100 movel_out 0
00:18:01:200 mover_out 1
00:18:01:200 movel_out 1

STOP

TURN LEFT

STOP

FWD

12. 00:18:05:000 LEFT_IN OBSTACLE 00:18:05:050 mover_out 0
00:18:05:050 movel_out 0
00:18:05:150 mover_out 2
00:18:05:150 movel_out 1
00:18:06:100 mover_out 0
00:18:06:100 movel_out 0
00:18:06:200 mover_out 1
00:18:06:200 movel_out 1

STOP

TURN RIGHT

STOP

FWD

13. 00:19:00:000 DISTANCE_IN 5cm 00:19:00:060 mover_out 0
00:19:00:060 movel_out 0
00:19:00:160 mover_out 1
00:19:00:160 movel_out 2
00:19:01:110 mover_out 0
00:19:01:110 movel_out 0
00:19:01:210 mover_out 1
00:19:01:210 movel_out 1

STOP

TURN LEFT

STOP

FWD

14. 00:20:00:000 DISTANCE_IN 20cm - Ignored – no obstacle
15. 00:21:05:000 LEFT_IN NO_OBSTACLE - Ignored – no obstacle
16. 00:21:15:000 RIGHT_IN NO_OBSTACLE Ignored – no obstacle
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00:13:00:150:214 movel_out 2
00:13:01:100:214 mover_out 0
00:13:01:100:214 movel_out 0

The model running in E-CD++ stand-alone software

reproduces the simulated results without any modifications

to the original models. After running various scenarios to

verify the model behavior on the board, the driver inter-

faces were mapped with the vehicle sensors and actuators.

The DISTANCE_IN driver is associated with a digital dis-

tance sensor for measuring the distance to nearby objects

and LEFT_IN and RIGHT_IN are linked to the vehicle

directions. The output drivers MOVER_OUT and

MOVEL_OUT are connected to the two servomotors.

The integration of the different components of the

Digital Quadruplets was completed. Figure 15 shows the

integration of the BIM model representing Carleton cam-

pus, various simulated vehicles executed, and the physical

model at scale integrated with the rest of the components.

We can execute various tests, for example we show the

case where the vehicle is running out of battery and reports

the results remotely, and visualization results are put into

the Digital Twin to report the system operator. Various

videos showing the execution on the target platforms are

available at https://bit.ly/2FMZS5P.

5. Conclusion

We introduced the concept of Digital Quadruplet: a 3D virtual

representation of the physical world under study, a Discrete-

Event formal model of the system of interest which can be

used for formal analysis as well as simulation studies, and a

physical model of the real system under study for experimen-

tation with the goal of improvement of the development of

Embedded Real-Time Systems. We showed the Digital

Quadruplet concept, and discussed how to use the Discrete-

Event formal model as a center for both simulation and execu-

tion of the real-time embedded components with timing con-

straints. We introduced E-CD++, a DEVS kernel running on

bare metal that runs on different hardware platforms and pro-

vides a DEVSRT-based execution engine that manages the

execution while models behave like processes. We now have

an OS independent platform that would be fully portable and

loadable onto various development boards by removing its

Linux dependency, which can be used to build the embedded

RT components in digital quadruplets.

At present we are building a complete Digital

Quadruplet of the 3rd Floor VSim building including con-

trollers for HVAC, lighting, occupancy, fire alarms, inte-

grating a complete BIM model of the floor, real-time data

obtained by sensors installed in the building, and ventila-

tion. The automated vehicle presented here will be inte-

grated in the building to roam between the different labs

exploring the use of UV light for disinfecting the labora-

tories under the current pandemic of coronavirus disease

2019 (COVID-19). The vehicle will be used to conduct dif-

ferent exploration analysis on possible configurations of

the equipment and the cleaning schedule, automating this

process without human intervention.
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